An improved evolutionary wrapper-filter feature selection approach with a new initialisation scheme

نویسندگان

چکیده

Treated as one of the popular measures in information theory, fuzzy mutual quantifies amount that random variable has about another one. Different from standard information, can deal with not only discrete-valued but also real-valued variables. Therefore, been recently used evolutionary filter feature selection approaches to measure correlation between classes and features, dependencies within a set. Typically, this way be considered computationally efficient sometimes it may contribute performance classification algorithm. To address issue, an improved wrapper-filter approach which integrates initialisation scheme local search module based on differential evolution is proposed. According number experiments conducted several real-world benchmark datasets, proposed does significantly improve computational efficiency computation technique

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Feature Selection Approach Using the Hybrid Filter Wrapper

Feature selection is an important data preprocessing technique and has been widely studied in data mining, machine learning and granular computing. In this paper, we introduced an effective feature selection method using the hybrid approaches, that is, use the mutual information to select the candidate feature set, then, obtain the super-reduct space from the candidate feature set by a wrapper ...

متن کامل

A hybrid wrapper / filter approach for feature subset selection

This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

Feature Selection for High Dimensional Data: An Evolutionary Filter Approach

Problem statement: Feature selection is a task of crucial importance for the application of machine learning in various domains. In addition, the recent increase of data dimensionality poses a severe challenge to many existing feature selection approaches with respect to efficiency and effectiveness. As an example, genetic algorithm is an effective search algorithm that lends itself directly to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2021

ISSN: ['0885-6125', '1573-0565']

DOI: https://doi.org/10.1007/s10994-021-05990-z